3 resultados para Repetitive DNA sequences

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

80.00% 80.00%

Publicador:

Resumo:

To elucidate the individual roles of the four Broad-Complex (BR-C) isoforms, Z1-Z4, on neuronal composition in the mushroom body, I undertook a series of overexpression experiments and created tools for knockdown experiments. Specifically, I imaged and analyzed Drosophila brains from earlier experiments in which BR-C isoforms Z1 and Z3 were individually overexpressed in the MB. The knockdown experiments required the creation of the molecular tools necessary for isoform-specific RNA interference (RNAi). For these I performed PCR to amplify DNA sequences unique to each isoform and inserted those into the pWIZ vector, which will permit expression of loopless hairpin double stranded RNA to trigger the RNAi pathway in the fly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the advent of cheaper and faster DNA sequencing technologies, assembly methods have greatly changed. Instead of outputting reads that are thousands of base pairs long, new sequencers parallelize the task by producing read lengths between 35 and 400 base pairs. Reconstructing an organism’s genome from these millions of reads is a computationally expensive task. Our algorithm solves this problem by organizing and indexing the reads using n-grams, which are short, fixed-length DNA sequences of length n. These n-grams are used to efficiently locate putative read joins, thereby eliminating the need to perform an exhaustive search over all possible read pairs. Our goal was develop a novel n-gram method for the assembly of genomes from next-generation sequencers. Specifically, a probabilistic, iterative approach was utilized to determine the most likely reads to join through development of a new metric that models the probability of any two arbitrary reads being joined together. Tests were run using simulated short read data based on randomly created genomes ranging in lengths from 10,000 to 100,000 nucleotides with 16 to 20x coverage. We were able to successfully re-assemble entire genomes up to 100,000 nucleotides in length.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity.